

ABAP OBJECTS – BASICS

GUIDED TUTORIAL

Exercises / Solutions by Peter McNulty, Horst Keller / SAP

2

Introduction

This exercise is a tutorial or guided tour through the fundamental language elements of ABAP
Objects and the usage of the respective ABAP Workbench tools. The tutorial is designed for
developers who have had little or no experience with ABAP and ABAP Objects until now.

The following class diagram shows the scope of the exercise.

(After finishing the exercise, you should be able to display this diagram for your own classes).

3

Exercise 1, Classes and Objects

(Solution in Package Z_ABAP_OBJECTS_INTRODUCTION_A)

Create a vehicle class
Create a class ZCL_VEHICLE_XX (where XX is your group number).
 The class should have the protected instance attributes SPEED and MAX_SPEED for its speed and maximum

speed, and the public methods SPEED_UP, STOP, and SHOW. Furthermore there should be a private attribute that
contains a running number for an object ID.

 SPEED_UP should have an IMPORTING parameter STEP. The method should increase the speed by STEP, but not
allow it to exceed the maximum speed.

 STOP should reset the speed to zero.
 WRITE should display a message containing the speed and the maximum speed.

Solution
1. Logon to the system and open the Object Navigator of the ABAP Workbench (Transaction SE80, enter /nSE80 in the

command field of the system task bar).
2. Select Local Objects in order to work in a test package that is not transported to other systems.

Hit Enter.

4

3. Right Click the name of the local package and navigate to the creation of a class (where XX is your group number).

4. Fill the pop-up as follows ZCL_VEHICLE_XX (where XX is your group number) and select Save.

 (Don’t forget to uncheck Final)

5

5. Acknowledge the following window without changes (select either Save or Local Object).

The same holds for all other development objects during this exercise.

6. Now you enter the Class Builder

Here you can edit the class either in Form-Based mode (default) or in Source Code-Based mode. Use the
respective button to toggle between the modes.

7. Switch to Source Code-Based mode , switch to Change mode and replace the
existing template with the following code (where XX is your group number).

CLASS zcl_vehicle_xx DEFINITION PUBLIC CREATE PUBLIC.

 PUBLIC SECTION.

 METHODS constructor.

 METHODS speed_up

 IMPORTING

6

 step TYPE i.

 METHODS stop.

 METHODS show.

 PROTECTED SECTION.

 DATA: speed TYPE i,

 max_speed TYPE i VALUE 50.

 PRIVATE SECTION.

 DATA id TYPE i .

 CLASS-DATA object_count TYPE i.

ENDCLASS.

CLASS zcl_vehicle_xx IMPLEMENTATION.

 METHOD constructor.

 object_count = object_count + 1.

 id = object_count.

 ENDMETHOD.

 METHOD show.

 DATA msg TYPE string.

 msg = `Vehicle ` && |{ id }| &&

 `, Speed = ` && |{ speed }| &&

 `, Max-Speed = ` && |{ max_speed }|.

 MESSAGE msg TYPE 'I'.

 ENDMETHOD.

 METHOD speed_up.

 speed = speed + step.

 IF speed > max_speed.

 speed = max_speed.

 ENDIF.

 ENDMETHOD.

 METHOD stop.

 speed = 0.

 ENDMETHOD.

ENDCLASS.

Check, Save and Activate the class (acknowledge all entries of the activation pop-up).

8. Switch back to Form-Based mode and play around in that mode by double clicking the class
components.

7

Tip: Select Signature when displaying the implementation of a method.

9.

Create an application class
Create a class ZCL_APPLICATION_XX (where XX is your group number).
 This class should use your vehicle class.
 It should have simply one static method START that creates and uses objects of ZCL_VEHICLE_XX.

Solution
1. Create the class in the object navigator, where you can directly right click Classes now

8

2. Fill the pop-up as follows (where XX is your group number).

3. Implement the class as follows:

CLASS zcl_application_xx DEFINITION PUBLIC ABSTRACT FINAL CREATE PUBLIC.

 PUBLIC SECTION.

 CLASS-METHODS start.

 PROTECTED SECTION.

 PRIVATE SECTION.

ENDCLASS.

CLASS ZCL_APPLICATION_XX IMPLEMENTATION.

 METHOD start.

 DATA vehicle TYPE REF TO zcl_vehicle_xx.

 DATA vehicle_tab LIKE TABLE OF vehicle.

 DATA tabindex TYPE i.

 DO 10 TIMES.

 CREATE OBJECT vehicle.

 APPEND vehicle TO vehicle_tab.

 ENDDO.

 LOOP AT vehicle_tab INTO vehicle.

 tabindex = sy-tabix * 10.

 vehicle->speed_up(tabindex).

 vehicle->show().

 ENDLOOP.

 ENDMETHOD.

ENDCLASS.

9

Check, Save and Activate the class (acknowledge all entries of the activation pop-up).

4. Select (F8) in the Class Builder and execute method START.

Now you can see the Ids and speed of the objects created.

5. To examine further, navigate to the source code of method START and create a breakpoint at an appropriate
position. To add a breakpoint at a certain line, double-click in the left margin on the line that you want a breakpoint. A

little should appear in the margin on that line. Similarly, this is the same way you remove a breakpoint.
6.

Test the method again and play around with the ABAP Debugger.

10

Exercise 2, Inheritance

(Solution in Package Z_ABAP_OBJECTS_INTRODUCTION_B)

Create a truck subclass
Create a subclass ZCL_TRUCK_XX (where XX is your group number).
 The class should have an instance constructor that sets the maximal speed to 100
 It should redefine the method SHOW to produce some specific output.

Solution

1. Create the class in the object navigator as before, but select Create inheritance () this time in order to enter a
Superclass.

Save and Activate .

2. Enter the truck’s own constructor in the Form-based mode (type it or select Create constructor),
double click it and implement it as follows:

 METHOD constructor.

 super->constructor().

 max_speed = 100.

 ENDMETHOD.

Save and Activate .

11

3. Select method SHOW in the Form-based mode and redefine it by selecting . Replace the implementation as
follows:

 METHOD show.

 DATA msg TYPE string.

 msg = `Truck ` &&

 `, Speed = ` && |{ speed }| &&

 `, Max-Speed = ` && |{ max_speed }|.

 MESSAGE msg TYPE 'I'.

 ENDMETHOD.

4. Save and Activate .
Check out the syntax in the Source code-based mode.

Create a ship subclass
Create a subclass ZCL_SHIP_XX (where XX is your group number).
 The class should have an instance constructor that sets the maximal speed to 30 and that has an import parameter

to set an additional read-only attribute to the ship’s name.
 It should redefine the method SHOW to produce some specific output (including the ship’s name).

Solution
1. Create the subclass ZCL_SHIP_XX in the object navigator as you did before for the truck class (where XX is your

group number)..

2. Add a new public instance attribute NAME of type STRING either in Form-based mode or in Source code-based
mode.

3. Insert the ship’s own constructor as you did for the truck class.

4. Create an importing parameter for the constructor either by selecting Parameter in Form-based mode

or by adding it in Source code-based mode:

 METHODS constructor

 IMPORTING

 name TYPE string.

12

5. Implement the constructor as follows:

 METHOD CONSTRUCTOR.

 super->constructor().

 max_speed = 30.

 me->name = name.

 ENDMETHOD.

13

6. Redefine method SHOW as follows:

METHOD show.

 DATA msg TYPE string.

 msg = me->name &&

 `, Speed = ` && |{ speed }| &&

 `, Max-Speed =` && |{ max_speed }|.

 MESSAGE msg TYPE 'I'.

ENDMETHOD.

7. Save and Activate ..
Check out the syntax in the Source code-based mode.

Adjust the application class
The code of the START method should demonstrate the usage of the subclasses now.
 Declare extra reference variables TRUCK and SHIP for the new classes.
 You can delete the code that creates objects for VEHICLE. Instead, create one instance of each of your new

subclasses and place the corresponding reference into VEHICLE_TAB.
 Call the method SPEED_UP for both classes using the respective subclass reference, and SHOW using a

superclass reference.

Solution
1. Replace the code of method START of ZCL_APPLICATION_XX with the following (where XX is your group number):

 METHOD start.

 DATA: vehicle TYPE REF TO zcl_vehicle_xx,

 vehicle_tab LIKE TABLE OF vehicle,

 truck TYPE REF TO zcl_truck_xx,

 ship TYPE REF TO zcl_ship_xx.

 CREATE OBJECT: truck,

 ship EXPORTING name = 'Titanic'.

 APPEND: truck TO vehicle_tab,

 ship TO vehicle_tab.

 truck->speed_up(30).

 ship->speed_up(10).

 LOOP AT vehicle_tab INTO vehicle.

 vehicle->show().

 ENDLOOP.

 ENDMETHOD.

Note the polymorphic method call vehicle->show() .

2. Execute method START from the Class Builder again.

14

Exercise 3, Interfaces

(Solution in Package Z_ABAP_OBJECTS_INTRODUCTION_C)

Create a status interface
 Create an interface ZIF_STATUS_XX (where XX is your group number).
 The interface should have one instance method SHOW.

Solution
1. Create the interface in the object navigator as follows:

2. Define one Method without parameters:

Save and Activate ..

15

Implement the interface in the superclass
Implement ZIF_STATUS_XX in ZCL_VEHICLE_XX (where XX is your group number).
 Copy the implementation of the class method SHOW to the interface method SHOW.
 Delete class method SHOW
 Create an alias name SHOW for the interface method in order to keep the subclasses valid.

Solution
1. Open ZCL_VEHICLE_XX and enter the interface either in Form-based mode:

or in Source code-based mode:

 PUBLIC SECTION.

 INTERFACES zif_status_xx.

2. Implement the interface method with the code from SHOW:

METHOD zif_status_xx~show.

 DATA msg TYPE string.

 msg = `Vehicle ` && |{ id }| &&

 `, Speed = ` && |{ speed }| &&

 `, Max-Speed = ` && |{ max_speed }|.

 MESSAGE msg TYPE 'I'.

ENDMETHOD.

3. Delete () method SHOW.

4. Create a public alias SHOW:

5. Save and Activate ..

6. Check ZCL_TRUCK_XX and ZCL_SHIP_XX (where XX is your group number). They redefine the superclass
interface method SHOW via the alias SHOW now and there should be no errors.

16

Create a new helicopter class that also implements the interface
Create a new class ZCL_HELICOPTER_XX (where XX is your group number) that is not part of the
ZCL_VEHICLE_XX inheritance tree but that also implements STATUS.

Solution
1. Create class ZCL_HELICOPTER_XX (where XX is your group number) as follows:

CLASS zcl_helicopter_xx DEFINITION PUBLIC FINAL CREATE PUBLIC .

 PUBLIC SECTION.

 INTERFACES zif_status_xx.

 PROTECTED SECTION.

 PRIVATE SECTION.

ENDCLASS.

CLASS zcl_helicopter_xx IMPLEMENTATION.

 METHOD zif_status_xx~show.

 DATA msg TYPE string.

 msg = `Helicopter, idle`.

 MESSAGE msg TYPE 'I'.

 ENDMETHOD.

ENDCLASS.

2. Save and Activate .

Adjust the application class
The code of the START method should demonstrate the usage of the interface now.
 Declare a reference variable HELI for the class ZCL_HELICOPTER_XX following (where XX is your group number)

and create a corresponding object.
 Replace the reference variable VEHICLE and the table VEHICLE_TAB with an interface reference STATUS and an

internal table STATUS_TAB.
 Insert the reference variables for truck, ship and helicopter into the table STATUS_TAB.

Solution
1. Replace the code of method START of ZCL_APPLICATION_XX with the following (where XX is your group number):

 METHOD start.

 DATA: status TYPE REF TO zif_status_xx,

 status_tab LIKE TABLE OF status,

 truck TYPE REF TO zcl_truck_xx,

 ship TYPE REF TO zcl_ship_xx,

 heli TYPE REF TO zcl_helicopter_xx.

 CREATE OBJECT: truck,

 ship EXPORTING name = 'Titanic',

 heli.

 APPEND: truck TO status_tab,

 ship TO status_tab,

 heli TO status_tab.

 truck->speed_up(30).

 ship->speed_up(10).

 LOOP AT status_tab INTO status.

 status->show().

 ENDLOOP.

 ENDMETHOD.

Note the polymorphic method call status->show() .

2. Execute method START from the Class Builder again.

17

Exercise 4, Events

(Solution in Package Z_ABAP_OBJECTS_INTRODUCTION_D)

Define an event in the ship class
Objects of ZCL_SHIP_XX (where XX is your group number) should raise an event if the speed becomes higher than
the maximal speed.
 Define an instance event DAMAGED in ZCL_SHIP_XX
 Raise the event in method SPEED_UP.

Solution
1. Open ZCL_SHIP_XX (where XX is your group number) in the Class Builder and define an instance event DAMAGED

either in Form-based mode:

or in Source code-based mode:

 PUBLIC SECTION.

 ...

 EVENTS damaged.

2. Redefine () method SPEED_UP and implement it as follows:

 METHOD SPEED_UP.

 speed = speed + step.

 IF speed > max_speed.

 max_speed = 0.

 CALL METHOD stop.

 RAISE EVENT damaged.

 ENDIF.

 ENDMETHOD.

3. Save and Activate .

Define an event handler method in the helicopter class
The helicopter class should be able to handle the event DAMAGED of the ship class.
 Define a public method RECEIVE as an event handler for event DAMAGED of ZCL_SHIP_XX in

ZCL_HELICOPTER_XX (where XX is your group number).
 Implement the event handler in a way that is simply sends a message that uses the default event parameter

SENDER to address the name of the damaged ship .

18

Solution
1. Open ZCL_HELICOPTER_XX (where XX is your group number) in the class builder.

In Form-based mode, enter a new public method RECEIVE and select Detail view () where you can define the
method as an Event handler:

and define the predefined importing parameter SENDER:

In Source code-based mode it is enough to type:

 METHODS receive

 FOR EVENT damaged OF zcl_ship_xx.
 IMPORTING sender.

19

2. Implement method RECEIVE as follows:

 METHOD receive.

 DATA msg TYPE string.

 msg = `Helicopter received call from ` && sender->name.

 MESSAGE msg TYPE 'I'.

 ENDMETHOD.

3. Save and Activate .

Adjust the application class
The code of the START method should register the instances of the helicopter class for the events of the ship class.
 Use statement SET HANDLER to register the event handler.
 Call method SPEED_UP of the ship object in order to raise the event.

Solution
1. Replace the code of method START of ZCL_APPLICATION_XX with the following (where XX is your group number):

 METHOD start.

 DATA: status TYPE REF TO zif_status_xx,

 status_tab LIKE TABLE OF status,

 truck TYPE REF TO zcl_truck_xx,

 ship TYPE REF TO zcl_ship_xx,

 heli TYPE REF TO zcl_helicopter_xx.

 CREATE OBJECT: truck,

 ship EXPORTING name = 'Titanic',

 heli.

 APPEND: truck TO status_tab,

 ship TO status_tab,

 heli TO status_tab.

 SET HANDLER heli->receive FOR ALL INSTANCES.

 truck->speed_up(30).

 ship->speed_up(10).

 LOOP AT status_tab INTO status.

 status->show().

 ENDLOOP.

 DO 5 TIMES.

 ship->speed_up(10).

 ENDDO.

 ENDMETHOD.

2. Execute method START from the Class Builder again.

20

Exercise 5, Exceptions

(Solution in Package Z_ABAP_OBJECTS_INTRODUCTION_E)

Define an exception class
Objects of ZCL_VEHICLE_XX should raise an exception ZCX_OVERHEATING_XX (where XX is your group number)
if the speed becomes higher than the maximal speed.
 Define an exception ZCX_OVERHEATING_XX (where XX is your group number)
 Raise the exception in method SPEED_UP.

Solution
1. Open ZCL_VEHICLE_XX (where XX is your group number) in the Class Builder, place the cursor on method

SPEED_UP in Form-based mode and select the button Exception.

2. Mark Exception Classes and enter ZCX_OVERHEATING_XX (where XX is your group number).

3. Save and select Yes and Save on the following pop-ups with respectively.

21

4. Double click the name of exception class, Activate it and return to the vehicle class.

5. Change the implementation if method SPEED_UP as follows (where XX is your group number).:

 METHOD speed_up.

 speed = speed + step.

 IF speed > max_speed.

 RAISE EXCEPTION TYPE zcx_overheating_xx.

 ENDIF.

 ENDMETHOD.

6. Save and Activate .

Adjust the application class
The code of the START method must handle the exception now.
 Use a TRY control structure to handle the exception ZCX_OVERHEATING_XX (where XX is your group number)
 Call method SPEED_UP of the truck object in order to raise the exception.

Solution
1. Check the syntax of method START of ZCL_APPLICATION_XX (where XX is your group number). You should get

the following warnings:

2. Adjust the implementation of method START as follows (where XX is your group number):

 METHOD start.

 DATA: status TYPE REF TO zif_status_xx,

 status_tab LIKE TABLE OF status,

 truck TYPE REF TO zcl_truck_xx,

 ship TYPE REF TO zcl_ship_xx,

 heli TYPE REF TO zcl_helicopter_xx.

 CREATE OBJECT: truck,

 ship EXPORTING name = 'Titanic',

 heli.

 APPEND: truck TO status_tab,

 ship TO status_tab,

 heli TO status_tab.

 SET HANDLER heli->receive FOR ALL INSTANCES.

 TRY.

 truck->speed_up(30).

 ship->speed_up(10).

 LOOP AT status_tab INTO status.

 status->show().

 ENDLOOP.

 DO 5 TIMES.

22

 ship->speed_up(10).

 ENDDO.

 DO 5 TIMES.

 truck->speed_up(30).

 truck->show().

 ENDDO.

 CATCH zcx_overheating_xx.

 MESSAGE 'Truck overheated' TYPE 'I'.

 EXIT.

 ENDTRY.

 ENDMETHOD.

No syntax warnings should occur any more.

3. Execute method START from the Class Builder again.

Exercise 6, Unit Tests

(Solution in Package Z_ABAP_OBJECTS_INTRODUCTION_F)

Define a test class with a test method for the vehicle class
Class ZCL_VEHICLE_XX (where XX is your group number) should contain a test class that tests the SPEED_UP
method completely.
 Declare and implement a local test class TEST_VEHICLE in the vehicle class.

Solution
1. Open ZCL_VEHICLE_XX (where XX is your group number) in the Class Builder an select the following:

2. Enter the following code there (where XX is your group number):

CLASS test_vehicle DEFINITION DEFERRED.

CLASS zcl_vehicle_xx DEFINITION LOCAL FRIENDS test_vehicle.

The second statement is the important one. It declares the test class as friend of the global class in order to have
access of the vehicle’s private components. The first statement is necessary for the ABAP Compiler. (select F1 to
learn more).

23

3. Navigate back to the Class Builder’s main screen and select Local Test Classes in the above menu, answer the
pop-up with Yes, and implement your test class as follows (where XX is your group number):

CLASS test_vehicle DEFINITION FOR TESTING

 RISK LEVEL HARMLESS

 DURATION SHORT.

 PRIVATE SECTION.

 DATA vehicle TYPE REF TO zcl_vehicle_xx.

 METHODS: test_speed_up FOR TESTING,

 setup,

 teardown.

ENDCLASS.

CLASS test_vehicle IMPLEMENTATION.

 METHOD setup.

 CREATE OBJECT vehicle.

 ENDMETHOD.

 METHOD test_speed_up.

 TRY.

 vehicle->speed_up(50).

 cl_abap_unit_assert=>assert_equals(

 EXPORTING

 exp = 50

 act = vehicle->speed

 msg = 'Speed not as expexted'

 level = if_aunit_constants=>critical).

 CATCH zcx_overheating_xx.

 cl_abap_unit_assert=>fail(

 EXPORTING

 msg = 'No exception expected'

 level = if_aunit_constants=>critical).

 ENDTRY.

 TRY.

 vehicle->speed_up(1000).

 cl_abap_unit_assert=>fail(

 EXPORTING

 msg = 'Exception expected'

 level = if_aunit_constants=>critical).

 CATCH zcx_overheating_xx.

 ENDTRY.

 ENDMETHOD.

 METHOD teardown.

 CLEAR vehicle.

 ENDMETHOD.

ENDCLASS.

Save

4. Navigate back to the Class Builder’s main screen, Save and Activate .

5. Carry out the test method by

Class -> Unit Test in the Class Builder menu

or

Test -> Unit Test from the context menu of the class in the Repository Browser

The result should be:

24

Use the ABAP Unit Browser
Examine the possibilities of the ABAP Unit Browser embedded in the Object Navigator

Solution
1. Select Utilities -> Settings in the Object Navigator and additionally select the ABAP Unit Test Browser under

Workbench (General):

2. Select the ABAP Unit Browser:

3. Select Class Pool, enter ZCL_VEHICLE_XX (where XX is your group number), and carry out the test with measuring
the test coverage:

25

4. After successful execution you can navigate through the results to view the test coverage:

26

27

Exercise 7, Service Enablement

(Solution in Package ZABAP_OO_SERVICEENABLEMENT

Expose Method As Web Service (Inside-Out Approach)

In this exercise,

 You will create a RFC-enabled Function Module to invoke the
IF_DEMO_CR_CAR_RENTL_SERVICE~MAKE_RESERVATION method from Class
CL_DEMO_CR_CAR_RENTAL_SERVICE

 Copy existing RFC-enabled Function Module into your Function Group

 Expose the RFC-enabled Function Modules in the Function Group as a Web Service

 Configure/Test the web service using SOAManager and Web Service Navigator

 Optionally, debug using an external breakpoint

Solution
1. Logon to the system and open the Object Navigator of the ABAP Workbench (Transaction SE80, enter /nSE80 in the

command field of the system task bar).
2. Select Local Objects in order to work in a test package that is not transported to other systems.

Hit Enter.

28

3. Create a Function Group

 Right Click the name of the local package and navigate to the creation of a Function Group.

 Enter ZFG_XX (where XX is your group number) and short text. Click Save.

 Acknowledge the following window without changes (select either Save or Local Object).

4. Create the function module.

 Expand the Function Groups Folder. Right click on the function group, ZFG_XX, and choose

Create->Function Module

 Enter zCustomerReserveCar_XX (where XX is your group number) and short text. Click Save.

 You can disregard the following informational message whenever it may appear

29

5. Define the function module interface by entering its parameters

 Provide the import parameters for the function module under Import tab

Parameter Name Typing Associated Type Pass Value

CUSTOMER_ID TYPE DEMO_CR_CUSTOMER_ID

CATEGORY TYPE DEMO_CR_CATEGORY

STARTDATE TYPE DEMO_CR_DATE_FROM

ENDDATE TYPE DEMO_CR_DATE_TO

 Provide the export parameters for the function module under Export tab

Parameter Name Typing Associated Type

Pass

Value

RESERVATIONS TYPE DEMO_CR_RESERVATIONS_TT

 RETURN TYPE BAPI_MSG

 Please mark “Remote-enabled Module” radio button under Attributes tab.

30

6. Complete the source code for your function module under Source Code tab.

You can toggle between Display and Change mode

using the icon.

 Add the ABAP source code
 DATA: lr_service TYPE REF TO if_demo_cr_car_rentl_service,

 lo_exception TYPE REF TO cx_root,

 l_customer TYPE demo_cr_scustomer,

 l_reservation TYPE demo_cr_sreservation.

 lr_service = cl_demo_cr_car_rental_service=>get_service().

 TRY.

 lr_service->make_reservation(

 EXPORTING

 i_customer_id = customer_id

 i_category = category

 i_date_from = startdate

 i_date_to = enddate).

 CATCH cx_demo_cr_no_customer cx_demo_cr_lock cx_demo_cr_reservation INTO lo_excep

tion.

 return = lo_exception->get_text().

 EXIT.

 CATCH cx_root INTO lo_exception.

 return = lo_exception->get_text().

 EXIT.

 ENDTRY.

 l_customer = lr_service->get_customer_by_id(customer_id).

* Method returns ALL reservations for this customer

 reservations = lr_service->get_reservations_by_cust_id(customer_id).

* Delete the records not matching the requested start and end dates

 DELETE reservations WHERE date_from <> startdate OR date_to <> enddate.

* We still may have the situation where the same reservation request was booked multipl

e times

 CASE lines(reservations).

 WHEN 0.

 return = `Unable to confirm reservation - Contact Help Desk`.

 WHEN 1.

 READ TABLE reservations INTO l_reservation INDEX 1.

 return = `Reservation ` && l_reservation-

reservation_id && ` Booked for ` && l_customer-name.

 WHEN OTHERS.

 sort reservations by reservation_id ascending.

 return = `Multipe reservation exist for ` && l_customer-

name && ` in the selected time period`.

 ENDCASE.

 Check, Save and Activate the Function Module

31

7. Copy 3 additional Function Modules from a different package into your Function Group

 Navigate to Package - ZABAP_OO_SERVICEENABLEMENT click Display

 Expand the Function Groups folder to display the Function Modules

 Right-click on the ZCUSTOMERCREATE_XX Function Module and Select Copy

32

 Enter the Following

o To Function Module ZCUSTOMERCREATE_99 (replace 99 with your group number)

o Function Group ZFG_99 (replace 99 with your group number)

o Select Copy

 You can ignore any pop-up informational messages

 Repeat the same steps above to copy 2 more Function Modules remembering to replace 99 with your

group number

Copy From Copy To

ZCUSTOMERFINDBYNAME_XX ZCUSTOMERFINDBYNAME_99

ZCUSTOMERGETRESERVATIONS_XX ZCUSTOMERGETRESERVATIONS_99

 Select Local Objects from the dropdown box

 Expand the Function Groups and Function Modules to Display your copied objects

33

 Double-click on ZCUSTOMERCREATE_XX (where XX is your group number) and then click

Activate

 Select the entire worklist and click continue

8. Using the Web Service Wizard, generate an Enterprise Service Definition for the function group ZFG_XX. (where XX

is your Group Number).

 Right mouse click on the function group, ZFG_XX, and choose Create->Other Objects->Enterprise

Service

34

 On the Provide Service Definition Details step, input the name of your service definition –

ZCustomerCarRental_XX(where XX is your Group Number). You can also enter a short description

(Kurzbeschreibung) and set the Endpoint Type to Function Group. Click Continue

 On the Choose Endpoint step, you have to specify the name of the function group which will serve as

the implementation for this service definition. If you want to use Name Mapping (underscores are

removed and changed to camel case) you can check the Mapping of names option.

35

 On the Choose Operations step, you can select which operations you wish to expose. Click Continue

 On the Configure Service step, set the PRF_DT_IF_SEC_LOW profile in order to set the lowest

security level for this service definition. Be sure to check Deploy Service. If you forget to check this

box, you can complete this step later, manually from transaction code SOAMANAGER by creating

an Endpoint.

36

 On the Enter Package/Request step, please check Local Object to save the generated Service

Definition as local/private.

 On the final step choose Complete.

37

 You can optionally explore the Service Definition that was generated by the Wizard.

9. To start the SOA Manager, use the transaction code SOAMANAGER. (enter /n SOAManager in the command field of

the system task bar). SOA Manager is used to complete the configuration of service providers and consumer proxies
in a local ABAP system.

 The transaction SOAMANAGER should launch a Web Dynpro ABAP based application in your

Internet Browser. Choose the Service Administration tab and then click on Single Service

Administration.

 In the Web Service Administration screen that comes up, you can search for your Service Definition

(Hint use wildcard Z*XX where XX is your group number)

38

 Select the row in the Search Results for your Service Definition and then click the Apply Selection

button. The bottom half of the screen will now show the details for the selected Service Definition.

 There are lots of changes that can be made to the Service Definition from this screen. You can see a

summary of all the settings from the Details tab. You can alter the published classification settings

from the Classification tab. From the Configurations tab, you see the Endpoints for this service. If you

had forgotten to Deploy Service during the wizard, you would now have to create this Endpoint

manually. The settings for the Endpoint were generated for us based upon the security profile we

choose during the wizard.

 Go Back to Design Time Details

 Click on the Overview tab

 Click on Open Web Service Navigator for the selected binding

39

 A Separate Browser Window is started. If you are asked to login, enter the credentials Tester /

abcd1234

 The url of wsdl is displayed. Click Next

 If prompted for a login to download the wsdl – Please enter your userid and pwd for M30 and click OK

 Select the ZCUSTOMERCREATE_XX operation (where XX is your group number) and Click Next

40

 Enter your Group Number for the Customer Name and Click Next

 The system displays the input parameters and the result of the test.

 Click on the Operation link

41

 Select the ZCUSTOMERFINDBYNAME_XX operation (where XX is your group number) and Click

Next

 Enter your Group Number for the Customer Name Click Next

 The system displays the input parameters and the result of the test.

 Important Please make note of your Customer ID (we will use this later).

42

 Click on the Operation link

 Select the ZCUSTOMERRESERVECAR_XX operation (where XX is your group number) and

Click Next

 Enter a Category A and the CustomerID returned from the ZCUSTOMERFINDBYNAME_XX

operation. Please be sure to enter the Start and End dates using the YYYY-MM-DD ISO date

format, Click Next

 The system displays the input parameters and the result of the test.

43

10. Optional – Set an External Breakpoint in Function Module ZCUSTOMERRESERVECAR_XX (where XX is

your group number) by right clicking in the left margin and Set External Breakpoint after which you can debug

from the WS Navigator into the ABAP system

 You can step thru the code using . The ABAP debugger has many powerful features

and learning how to use it is essential for Java programmers accessing ABAP Business Logic.

44

© 2009 by SAP AG.

All rights reserved. SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business ByDesign, and other SAP products and services
mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and other countries.

Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and other
Business Objects products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of Business
Objects S.A. in the United States and in other countries. Business Objects is an SAP company.

All other product and service names mentioned are the trademarks of their respective companies. Data contained in this document serves
informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated companies ("SAP Group") for
informational purposes only, without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to
the materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty statements
accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

